
Some exercises
Paulo Fagandini∗

1. Show that the set A = {(x, y) ∈ R2 : x > y} is open in R2.

Solution: Let f(x, y) = x− y. f is a difference of continuous functions, then, it is continuous. The
codomain of f is open (given that x > y ⇒ f(x, y) = x− y > 0) Finally, continuous functions take
open sets to open sets, and therefore the domain must be open. Then A must be open.

2. Show that B ⊂ U ⊂ R2 is closed in U ⇔ ∀{xn}n∈N → x̄, {xn}n∈N ⊂ B, x̄ ∈ B

Solution: (⇒)

Let {xn}n∈N ∈ B, {xn}n∈N → x̄.
Let x̄ ∈ Bc, given that B is closed, then by definition Bc is open. It follows that:

∃ε > 0 tal queBε(x̄) ⊂ Bc

Using the definition of converging sequence, then ∃n ∈ N such that: ‖ xn − x̄ ‖< ε

Then, if we count the n > N we obtain a convergent sequence with part of it in Bc, but by hypothesis,
the sequence is contained in B, contradiction.
(⇐)

The sequence {xn}n∈N ⊂ B converges to x̄ ∈ B. Assume that B is not closed, then Bc is not open,
and therefore ∃x̄ ∈ Bc such that ∀ε > 0, Bε(x̄) has some elements of B.
If you pick positive integers such that ‖ xn − x̄ ‖< 1

n with xn ∈ B then we have a convergent
sequence with limit x̄ and {xn}n∈N ∈ B with x̄ ∈ Bc, contradiction.

3. Given U ⊂ Rn, if the function g : U → R is continuous in U , then {x ∈ U : g(x) ≥ 0} is closed in U .
Show that you cannot change the then with an if and only if ( i.e. :).

Solution: It is enough to show that {x ∈ U : g(x) ≥ 0} closed in U is not enough to show
that g : U → R is continuous in U . Even further, it is enough to show some g that satisfies
{x ∈ U : g(x) ≥ 0} closed in U . Take U = [−3, 3] ⊂ Rn such that g(x) = −1 when x ∈ [−3, 1) and
g(x) = 1 when x ∈ [1, 3]. {x ∈ U : g(x) ≥ 0} is closed in U , U ⊂ Rn but g is not continuous.

4. Show: For U ⊂ R compact and f continuous, then f : U → R is uniformly continuous.

∗Any mistake in the solutions is of the exclusive my responsibility.
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Solution: Let B(x) an open ball in U , centered in x with radius δ(x)/2. U is the union of a set
of these open balls. For every point in the set, you can create one of these balls. However, as U is
compact we can choose a finite set of points that serve as center for these balls, such that:

U = B(x1)
⋃

B(x2)
⋃

B(x3)...
⋃

B(xn)

If you choose delta as the lowest of the δ(x)/2, we can be certain that we have satisfied the require-
ment (that the intersection is contained in the set). Now take p and q ∈ U , such that d(p, q) < δ,
for some xi, you have that p ∈ B(xi). Then d(p, xi) < δ(xi)/2 However,

d(pi, q) ≤ d(xi, q) + d(p, q) < δ(xi)/s+ δ ≤ δ(xi)

Then wen use δ = min{δ(xi)/2}i∈{1,...,n}.

d(xi, p) + d(xi, q) < δ(xi)

Now using point continuity, given δ(xi) we choose it, and we have d(f(xi), d(p)) <
ε
2 y d(f(xi), f(q)) <

ε/2.
d(f(p), f(q)) ≤ d(f(xi), f(p)) + d(f(xi), f(q)) <

ε

2
+

ε

2
= ε

5. Show that ∅ and Rn are convex.

Solution: ∅ → You cannot show that is not convex, as you cannot pick two elements in the set such
that do not satisfy convexity. Rn → Sea a y b ∈ Rn, t ∈ [0, 1] ta + (1 − t)b, because of the axioms
of Rn ta belongs to Rn, and the summation as well, then it is convex (and a vector space!).

6. Given A and B convex, subsets of Rn, show that:

A+ tB := {a+ tb : a ∈ A, b ∈ B}

is convex ∀t ∈ R.

Solution: Let ai ∈ A, bi ∈ B y zi = ai + tbi ∈ A+ tB i = 1, 2. Let’s show that {λz1 + (1− λ)z2} ∈
A+ tB λ ∈ (0, 1) ∀t ∈ R, z1, z2 ∈ A+ tB

We know that

λz1 + (1− λ)z2 = λa1 + λtb1 + (1− λ)a2 + (1− λ)tb2 = λa1 + (1− λ)a2︸ ︷︷ ︸
∈A,convex

+t λ(b1 + (1− λ)b2)︸ ︷︷ ︸
∈B,convex

Then, it belongs to the set.

7. An arbitrary intersection of convex sets is convex.

Solution: Let a and b elements in the intersection of convex sets, then (λa+ (1− λ)b) belongs to
each set, as these are convex. If it belongs to all, then it also belongs to the intersection. Then, the
intersection is convex.
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8. Show that a vector space is convex.

Solution: By definition, a vector space contains elements that can be added up and multiplied by
a scalar. In particular, convex combinations of its elements belong to the same vector space.
Let a and b belong to a vector space, λa and (1−λ)b are well defined and belong to the vector space
as λ ∈ R, and particularly λ ∈ (0, 1).
As the summation is closed in the vector space then the summation λa + (1 − λ)b belongs to the
vector space, concluding the proof.

9. C ⊂ Rn convex ⇒ The closure is convex.

Solution: If C is closed, then it is trivial. Let C be not closed.
Let the closure to be not convex, while C is convex.
Let a, b ∈ C̄\C λ ∈ (0, 1), λa + (1 − λ)b 6∈ C̄ Then ∃{an}n∈N, {bn}n∈N ⊂ C such that {λan + (1 −
λ)bn} ∈ C∀n A linear combination is continuous, so if I get close to a and b, the linear combination
of these elements in the sequence must go through the closure, but C is convex, then contradiction.

10. There is a market with J assets traded by subjects that maximize their wealth. Each subject can create
a portfolio θ = (θ1, ..., θJ) ∈ RJ , where θj > 0 means that the subject bought θj units of asset j, while
θj < 0 means that the subject promised in the future to pay the market value of θj units of asset J (or,
shorted θj units of the asset j). The value of each unit of asset j is given by qj ≥ 0. Assume there is
uncertainty regarding the future price of the assets. Consider that there are S different possible states
of nature. On state s ∈ {1, ..., S} the asset j ∈ {1, ..., J} has a value of Rs,j per unit. In sum, a portfolio
θ ∈ RJ will be worth, for a specific state of nature s ∈ {1, ..., S}

∑J
j=1 Rs,jθj .

As said, the subjects try to maximize their wealth, it is expectable that there are no positions that
could generate unlimited wealth without taking some risks. Formally, let’s say that there is no arbitrage
if there is no portfolio θ ∈ RJ such that

∑J
j=1 qkθj ≤ 0 and, for each state of nature s ∈ {1, ..., S},∑J

j=1 Rs,jθj ≥ 0, with at least one of the inequalities being strict. Put in words, there is no way of (i)
get more money today without sacrificing (expected) future wealth; or (ii) without paying nothing today
increasing future wealth.
The following steps are suggested:
(a) Let

A =


−q1 . . . −qJ
R1,1 . . . R1,J

...
...

RS,1 . . . RS,1


Show that, without aribtrage, the set C := {z ∈ RS+1 : ∃θ ∈ RJ , z = Aθ} is disjoint with
Cε := {z ∈ RS+1

+ :‖ z ‖∈ [ε, 2]}, ε > 0.

Solution: C :=

z =


∑J

i=1 −qiθi∑J
i=1 R1iθi

...∑J
i=1 Rsiθi


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 z1 = −q1θ1 − q2θ2 − ...− qJθJ

...
zi = Ri1θ1 +Ri2θ2 − ...+RiJθJ

...
zs = Rs1θ1 +Rs2θ2 − ...+RsJθJ

If there is no arbitrage then:

@θ ∈ RJ such that
J∑

j=1

qjθj ≤ 0 and s ∈ {1...S}
J∑

j=1

Rsjθj ≥ 0

If you could find some θ such that happens, then z ∈ Rs+1
+ . As it doesn’t happen, it can be

zero, or with some negative coordinate, then z ∈ Rs+1\Rs+1
+ . It follows that Cε ∩ C = ∅ as

Cε ⊂ Rs+1
+ and therefore they are disjoint.

(b) Show that C and Cε are convex, non empty and closed. Show that Cε is compact.

Solution:
The empty set case is trivial because 0 ∈ C and given z ∈ Cε, in particular a vector such that
{c ∈ Rs+1

+ : 0 ≤‖ c ‖≤ 2} ⇒
√∑s+1

1 (ci)2 ≤ 2

s+1∑
i=1

(ci)
2 ≤ 4

For example cj = 2 and all the others 0 satisfies the requirement.
Convexity,
The set Cε is a closed ball in RS+1

+ , that is a convex set. Then Cε is convex.
C: Let a and b ∈ C, λ ∈ [0, 1]

λa+ (1− λ)b = λAθc + (1− λ)Aθb

= Aθb + λ(Aθc −Aθb) = A[θb + λ(θc − θb)]

= A (θb(1− λ) + λθc)︸ ︷︷ ︸
∈RJ

⇒ ∃θ ∈ RJ such that the set is convex

Closedness,
Cε is closed in Rs+1

+ . It is enough to show that Rs+1
+ is open if we exclude Cε, that is, to show

that {z ∈ Rs+1
+ :‖ z ‖< 2}, but the function ‖ · ‖ is continuous, and its codomain in the set is

(2,+∞), then the set is open. By definition of a closed set, Cε is closed.
C is closed, because z is a linear transformation of a vector space. The linear transformation
of a vector space is itself a vector space, and a vector space is always closed.
That Cε is compact is trivial, as the norm of all of its element is bounded by 2. Then, as we
have shown, Cε is closed and bounded, then it is compact.
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(c) Show that there is p >> 0 such that pz ≤ 0, for each z ∈ C. [Hint: Lookout the hyperplane
separation theorem]

Solution:
From the previous result, we can apply the hyperplane separation theorem. In particular we
have

pa < c < pb ∀(a, b) ∈ C × Cε, fore some c ∈ R

Where we can chose p.
Of curse we cannot set p = 0 as 0 < 0 is false. The elements in Cε have at least one positive
coordinate. Then, we can bound it from below with 0. However 0 is feasible in C, and we know
that pz ≤ 0. As z has some negative coordinate, the it could be that if p would have negative
coordinates, we could obtain something “greater or equal” than 0. Finally, as p cannot be 0,
then p >> 0.

(d) Show that pz = 0 for each z ∈ C (remember that C is a vector subspace).

Solution: Let’s assume that pz < 0. If that is true, then p(−z) > 0, but as C is a vector
subspace, −z must belong to the vector subspace, but pz < 0 ∀z ∈ C. Contradiction. The only
possibility is that pz = 0.

(e) Conclude the proof.

Solution: Given that pz = 0 and that p >> 0 then:

pz = 0

−p1

J∑
j=1

qjθj + p2

J∑
j=1

R1,jθj + . . .+ ps+1

J∑
j=1

RS,jθj = 0

p2

J∑
j=1

R1,jθj + . . .+ ps + 1

J∑
j=1

RS,jθj = p1

J∑
j=1

qjθj

p2
p1

J∑
j=1

R1,jθj + . . .+
ps+1

p1

J∑
j=1

RS,jθj =

J∑
j=1

qjθj

If we redefine, pj

p1
= γj−1 then we have:

γ1

J∑
j=1

R1,jθj + . . .+ γS

J∑
j=1

RS,jθj =

J∑
j=1

qjθj

The this is equivalent to:

γTRθ = qT θ

γTR = qT

The for each element i we have that:
J∑

j=1

γiRi,j = qi
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For the next questions, consider that a function is said to be quasiconcave if f(λx1 + (1 − λ)x2) ≥
λf(x1) + (1− λ)f(x2)

11. Show that any function f : Rn → R as f(x) = ax+ b, where a ∈ Rn and b ∈ R, is quasiconcave.

Solution:

f(λx1 + (1− λ)x2) = aλ(x1 − x2) + f(x2) + λb− λb

= λf(x1)− λf(x2) + f(x2)

= λf(x1) + (1− λ)f(x2)

⇒ f(λx1 + (1− λ)x2) = λf(x1) + (1− λ)f(x2)

si, f(x1) > f(x2)

≥ f(x2) = min f(x1), f(x2)

si, f(x1) < f(x2)

≥ f(x1) = min f(x1), f(x2)

⇒ f(λx1 + (1− λ)x2) ≥ min f(x1), f(x2)

12. A monotone function (increasing or decreasing) is always quasiconcave.

Solution: Having x1 ≥ x2 is clear that λx1 + (1− λ)x2 ≥ x2, Then:

f(λx1 + (1− λ)x2) ≥ f(x2), if f is increasing.
⇒ f(x2) = min{f(x1), f(x2)}

f(λx1 + (1− λ)x2) ≥ f(x1), if f is decreasing.
⇒ f(x2) = min{f(x1), f(x2)}

In both cases f(λx1 + (1− λ)x2) ≥ min{f(x1), f(x2)}, then f is quasiconcave.

13. Any concave function is quasiconcave.

Solution: If:

f(x1) < f(x2) ⇒ λf(x1) + (1− λ)f(x2) ≥ λf(x1) + (1− λ)f(x1) = f(x1) = min{f(x1), f(x2)}

The proof in the opposite case follows in the same way.

14. Given function f : U ⊂ Rn → R, where U is convex, f is quasiconcave in U if and only if, for each a in
R the set Ua = {x ∈ U : f(x) > a} is convex.

Solution:
(⇒) hypothesis:
f is quasiconcave in U, a ∈ R, for when U = ∅, is trivial. Let U 6= ∅.
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Let x1, x2 ∈ U a ∈ R, λ ∈ (0, 1).

zλ = λx1 + (1− λ)x2 ∈ U , because U is convex
using f ’s quasiconcavity

f(λx1 + (1− λ)x2) ≥ min{f(x1), f(x2)} → (easy to see by the def. of the set)
min{f(x1), f(x2)} > a then
f(λx1 + (1− λ)x2) > a ⇒ f(λx1 + (1− λ)x2) ∈ Ua

⇒ Ua is convex

(⇐) Now the hypothesis is: Ua is convex for each a ∈ R. Let x1, x2 ∈ U , {x1, x2} ⊂ Umin{f(x1),f(x2)}
then for each λ ∈ (0, 1)

λx1 + (1− λ)x2 ∈ min{f(x1), f(x2)}
⇒ f(λx1 + (1− λ)x2) ≥ min{f(x1), f(x2)} ∀λ ∈ (0, 1)

Concluding the proof.

15. Given (α, β) >> 0, (x, y) ∈ R+, the function f(x, y) = xαyβ is strictly quasiconcave.

Solution: Using the result in exercise (14), if a = 0, then it is easy to see that f is quasiconcave.
(R2

+ is convex).

16. Given a ∈ Rn, f(x) = − ‖ x− a ‖ is strictly quasiconcave.

Solution: Let x, y ∈ Rn

z = λx+ (1− λ)y

g(x) = −f(x)

g(z) =‖ λx+ (1− λ)y − a ‖
=‖ λ(x− a) + (1− λ)(y − a) ‖
≤ λ ‖ x− a ‖ +(1− λ) ‖ y − a ‖

Assume an x further from a than from y.

g(z) < g(x)

g(λx+ (1− λ)y) < g(x)

‖ λx+ (1− λ)y − a ‖ <‖ x− a ‖ /− 1

− ‖ λx+ (1− λ)y − a ‖ > − ‖ x− a ‖
f(z) > f(x)

Because we assumed x further from a than from y,

g(x) = max{g(x), g(y)}
⇒ f(x) = min{f(x), f(y)}

Then f(z) > min{f(x), f(y)}, concluding the proof.
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1 Bonus Track, Proof fo the Caratheodory’s Theorem

Definition 1.1. The covenxhull of a set S is the set that contains all the convex combinations of a finite
number of elements of S.

If some x ∈ Rd is in the convexhull of P (co(P )), then, there is a subset P ′ ⊂ P that has d + 1 or less
elements such that x is in the co(P ).

Solution:
Let x ∈ co(P ). Then x is a convex combination of a finite number of elements of P :

x =

k∑
j=1

λjxj

where each xj ∈ P , each λj ≥ 0 and it holds that

k∑
j=1

λj = 1

Assume that k > d+1 (if not, there is nothing to prove). Then, the elements (x2−x1), ..., (xk −x1)
are linearly dependent, that is there are scalars µ2, ..., µk such that:

k∑
j=2

µj(xj − x1) = 0

k∑
j=2

µjxj −
k∑

j=2

µjx1 = 0

k∑
j=2

µjxj =

k∑
j=2

µjx1

If we define

µ1 := −
k∑

j=2

µj

k∑
j=2

µjxj =

k∑
j=2

µjx1 /+ µ1x1

k∑
j=1

µjxj = x1

k∑
j=1

µj

And noting that:
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x1

k∑
j=1

µj = µ1x1 +

k∑
j=2

µjx1 = −x1

k∑
j=2

µj + x1

k∑
j=2

µj = x1

− k∑
j=2

µj +

k∑
j=2

µj

 = 0

Then
k∑

j=1

µjxj = x1

k∑
j=1

µj = 0

k∑
j=1

µjxj = 0

k∑
j=1

µj = 0

And not all the µj are zero. Then, at least some µj > 0. It follows that,

x =

k∑
j=1

λjxj − α

k∑
j=1

µjxj =

k∑
j=1

(λj − αµj)xj

for some α ∈ R. In particular, the inequality will hold if α is defined as,

α := min
1≤j≤k

{
λj

µj
: µj > 0

}
=

λi

µi

Note that α > 0 and for j between 1 and k,

λj − αµj ≥ 0

in particular λj − αµj = 0, by definition of α. Then

x =

k∑
j=1

(λj − αµj)xj

where each (λj − αµj) is non negative, adds ip to 1 and even further, λi − αµi = 0. In other words
x is a convex combination of at the most k − 1 elements of P .
This process can be repeated until x is represented as a convex combination of at the most d + 1
elements of P .
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